일반 소재보다 훨씬 단단한 소재를 초경질 소재(superhard material)라고 한다.
강도를 측정하는 비커스 경도 시험(Vickers hardness test)에 의해 강도가 40 기가파스칼(GPa)을 넘는 물질을 말한다.
1 기가파스칼급 강판인 기가스틸에 대해 10원짜리 동전 크기의 물질로 10t의 무게를 견딜 수 있을 정도의 강도를 뜻하는데 이를 감안할 경우 40 기가파스칼의 강도를 갖기 위해서는 10원짜리 동전 크기로 400톤의 무게를 견딜 수 있어야 한다.
과학자들이 다이아몬드보다 더 강한 소재를 설계하는데 성공했다. 사진은 뉴욕주립대 과학자들이 설계한 43종의 초경질 소재 중 3종의 결정 구조. 다이아몬드보다 더 단단한 것으로 확인되고 있다. ⓒBob Wilder / University at Buffalo
다이아몬드 대체 기술, 돌파구 열어
그동안 많은 과학자들이 초경질 소재를 개발하기 위해 많은 노력을 기울여왔다.
이 물질을 개발할 경우 가격이 비싼 다이아몬드를 대체해 사용할 수 있어 비용을 크게 절감할 수 있다고 판단했기 때문.
다른 물질에 접촉했을 때 손상을 주지 않으면서 드릴(drill), 절단(slice) 작업을 할 수 있고, 표면을 부드럽게 하거나 도장할 수 있는 소재를 개발해왔지만 뚜렷한 성과를 거두지 못하고 있었다.
그러나 최근 과학자들이 다이아몬드 수준에 도달할 수 있는 초경질 소재를 만들 수 있는 다수의 탄소 구조를 설계해 과학계를 흥분케 하고 있다.
10일 ‘phys.org’는 뉴욕주립대 버펄로 캠퍼스에서 초경질 소재를 개발할 수 있는 물질구조를 설계하는데 성공했다고 보도했다.
화학자 에바 쥬렉(Eva Zurek) 교수는 인터뷰를 통해 “컴퓨터 분석 기술을 활용, 이전에 알려지지 않은 43종의 탄소 구조를 설계하는데 성공했으며 이중 일부는 다이아몬드에 근접하거나 넘어설 정도로 높은 강도를 지니고 있다.”고 말했다.
그는 또 “이 구조들을 활용해 초경질물질을 개발할 경우 비싼 다이아몬드를 대체할 수 있는 소재 개발이 가능해 산업계에서 지출하는 비용을 대폭 절감할 수 있다.”고 말했다.
연구 결과는 지난주 네이처 자매지 ‘’엔피제이 컴퓨테이셔널 머터리얼즈'(npj Computational Materials)’ 지에 게재됐다. 논문 제목은 ‘Predicting superhard materials via a machine learning informed evolutionary structure search’이다.
연구팀은 논문을 통해 최근 컴퓨터 기술 발전으로 산업계에서 필요한 초경질 물질 구조들을 예측해 화합물을 설계할 수 있는 길이 열렸다고 설명했다.
연구팀이 활용한 것은 기계학습(machine learning)이다. 미래 생산이 가능한 신소재 결정구조를 찾기 위해 오픈소스의 진화 알고리즘인 ‘XtalOpt’을 개발했으며, 이 알고리즘에 머신러닝을 적용했다고 밝혔다.
신물질, 열과 전기에 민감하게 반응해
산업계에서 사용하고 있는 다이아몬드는 지금까지 알려진 가장 단단한 물질이다. 강도가 70~150 기가파스칼에 달한다.
그러나 양질의 다이아몬드를 구입하려면 천문학적인 비용을 지불해야 한다. 때문에 산업계에서는 다이아몬드 사용이 늘어나면서 높은 가격 때문에 골머리를 앓아왔다.
과학자들이 오스뮴(Osmium)과 같은 다이아몬드를 대체할 새로운 물질들을 개발해왔지만 기대에 못 미쳤다. 고압에서 견딜 수 있는 강도에서 미흡함을 보였으며 드릴, 절단 등의 능력에 있어서도 다이아몬드를 흉내 낼 수 없었다.
이런 상황에서 과학자들은 다이아몬드처럼 높은 전자 밀도를 지니고 있으면서 질서정연하게 원자가 배열된 신소재를 설계하기 시작했다.
뉴욕주립대 연구 결과에 따르면 과학자들의 이런 노력에 인공지능 기술인 머신러닝이 결정적인 도움을 준 것으로 나타나고 있다.
또한 컴퓨터 기술 발전으로 생산 비용이 훨씬 적게 들면서 강도와 예민함에 있어서는 다이아몬드에 버금가는 새로운 물질을 설계했다.
쥬렉 교수는 “새로 설계한 43종의 결정구조들 가운데는 초경질의 특성을 지니고 있으면서 열과 전기에 더 민감하게 반응하는 등 다이아몬드와 다른 속성을 지니고 있는 결정구조들이 다수 포함돼 있다.”고 밝혔다.
그러나 이들 43종의 결정구조가 실용화되기 위해서는 실제 비커스 경도 시험을 거쳐 그 강도가 확인돼야 한다.
다이아몬드란 명칭은 ‘정복할 수 없다’란 뜻을 지닌 그리스어 아다마스(adamas)에서 나왔다. 고대 그리스인들의 말대로 2000여 년이 지난 지금까지 인류는 다이아몬드의 강도와 예민한 특성을 정복하지 못했다.
뉴욕주립대의 이번 연구 결과는 그동안 불가능한 것으로 여겨져 왔던 다이아몬드의 신비를 재현할 수 있는 길을 열어놓고 있다. 특히 소재 분야 과학자들은 논문을 접한 후 다이아몬드를 정복할 문이 열렸다며 놀라움을 표명하고 있다.
(12401)
로그인후 이용 가능합니다.
울산과학기술원(UNIST)은 나사 풀림 위험을 감지하거나 내·외부 물리적 변형 요인을 구분할 수 있는 지능형 금속 부품을 개발했다고 26일 밝혔다. UNIST에 따르면 기계공학과 정임두 교수 연구팀은 3D 프린팅 적층제조기술과 인공지능 기술을 이용해 '인지 가능한 스테인리스 금속 부품'을 개발하는 데 성공했다. 또 인공지능 기술과 증강현실 융합기술로 금속 부품 단위의 디지털 트윈(Digital Twin)을 구현했다.
원자력발전소의 배기가스나 산업체·병원 등에서 유출될 수 있는 극위험물질 '방사성 요오드'를 고습 환경에서도 효과적으로 제거할 수 있는 기술이 개발됐다. 한국화학연구원 황영규·홍도영 박사 연구팀은 현재 쓰이는 탄소계 흡착제보다 280배 높은 방사성 요오드 제거 성능을 보이는 다공성 흡착제를 개발했다고 26일 밝혔다.
절단된 신경을 수술용 봉합실 없이 홍합에서 추출한 단백질을 이용해 이어붙일 수 있는 기술이 나왔다. 포항공대(포스텍)는 화학공학과 차형준 교수·정호균 박사 연구팀과 이화여대 화공신소재공학과 주계일 교수, 가톨릭대 서울성모병원 성형외과 전영준 교수·이종원 교수·재활의학과 이종인 교수 연구팀이 공동으로 홍합접착단백질 기반 의료용 하이드로젤 접착제를 개발했다고 26일 밝혔다.
한국과학기술원(KAIST)은 물리학과 김용현 교수 연구팀이 수천 년 동안 해결되지 않은 난제 가운데 하나인 마찰전기 발생 원리를 규명했다고 26일 밝혔다. 연구팀은 두 물질을 마찰시킬 때 경계면에서 발생하는 열에 의해 전하가 이동할 수 있다는 아이디어를 바탕으로 마찰전기의 작동원리를 찾아냈다. 마찰전기와 관련한 가장 대표적인 두 가지 현상이 마찰열과 전기적 성질을 띠는 대전현상인데, 연구팀은 마찰전기를 '마찰열에 따른 대전현상'으로 설명하기 위해 미시적 열전효과(열과 전기의 상관 현상)에 주목했다.
한국의 첫 지구 관측용 민간 위성인 한글과컴퓨터(이하 한컴) 그룹의 '세종1호'(Sejong-1)가 한국 시간 26일 오전에 궤도에 안착하는 데 성공했다. 한컴에 따르면 세종1호는 발사 후 예정된 궤도에 안착했으며, 한국 시간으로 오전 11시 11분에 지상국과의 교신이 성공적으로 완료됨에 따라 궤도 진입의 성공이 확인됐다.
종양 내부에 발생하는 저산소증만 감지해 암을 진단할 수 있는 신개념 조영기술이 개발됐다. 한국기초과학지원연구원(KBSI) 바이오융합연구부 홍관수 박사 연구팀은 미국 텍사스대 세슬러 교수 연구팀과 공동으로 종양의 저산소증에 반응해 신호를 내는 감응성 바이모달(MRI·광학 혼합) 이미징 프로브를 개발했다고 25일 밝혔다.
인공지능(AI) 기술이 국가안보에도 중대한 영향을 미치는 상황에 우리나라가 대응해 필수적인 AI 기술을 중점 육성해야 한다는 제언이 나왔다. 24일 학계에 따르면 소프트웨어정책연구소가 최근 펴낸 '국가안보를 위한 인공지능과 3대 전략 기술'보고서는 우리 정부가 보호·육성해야 할 AI 기술로 ▲ 지능형 반도체 ▲ 자율무기 ▲ 생성적 적대 신경망(GAN) 등 3가지를 제시했다.