사이언스타임즈 로고

정보통신기술
연합뉴스
2024-07-29

“AI-수치모델 결합 새 기후모델 '뉴럴GCM' 개발…정확도 개선” 구글 "장단기 예측·시뮬레이션 모두 우수…계산 효율 크게 향상"

  • 콘텐츠 폰트 사이즈 조절

    글자크기 설정

  • 프린트출력하기

기계학습(machine learning)을 활용한 인공지능(AI)과 기존 수치해석 기반의 일반 순환 모델(GCM)을 결합해 장단기 예보 및 기후 시뮬레이션 정확도를 높인 새로운 기후예측 모델이 개발됐다.

뉴럴CGM과 기존 기후예측 모델의 40년간 지구 기온 예측 정확도 비교. 구글리서치 연구팀이 개발한 '뉴럴GCM'(NeuralGCM, 파란색)과 일반순환모델(GCM)을 기반으로 한 기존 기후예측 모델(AMIP, 빨간색)의 1980~2020년 지구 기온 예측치와 실제 기온(ERAS5, 노란색) 비교 그래프. ⓒGoogle Research 제공

미국 구글리서치 스테판 호이어 박사팀은 23일 과학 저널 네이처(Nature)에서 기계학습과 기존 기후 모델을 결합, 정확한 날씨 예측과 기후 시뮬레이션을 함께 수행할 수 있는 기계학습 모델 '뉴럴GCM'(NeuralGCM)을 개발했다고 밝혔다. 연구팀은 뉴럴GCM은 최근 개발되고 있는 AI 기후 모델이나 기존 수치해석 방식의 기후 모델과 성능이 비슷하거나 뛰어나면서도 계산 효율이 높아 컴퓨터 사용을 크게 줄일 수 있다고 말했다.

지구 대기 및 해양의 순환에 대한 수학적 모델인 일반 순환 모델(GCM)은 날씨와 기후 예측의 기초가 되는 모델로, 70여년간 수치해석 및 물리 모델 개선과 함께 발전해왔으며 더 빠른 컴퓨터 활용으로 정확도도 개선되고 있다.

최근 기계학습을 이용할 경우 계산 비용을 줄일 수 있는 이점이 있어 날씨 예측에 이를 활용하는 모델이 활발히 연구되고 있으나, 장기 예측의 경우 아직 기존 GCM 모델만큼 성능을 발휘하지 못하는 경우가 많다고 연구팀은 지적했다.

뉴럴GCM 모델 구조. 뉴럴GCM(NeuralGCM)은 기존의 유체 역학 해석 기법과 소규모 물리학 신경망을 결합한 모델로, 각 구성 요소는 미분 방정식 소프트웨어에 의해 결합되고 순차적으로 계산돼 최종 예측값을 생성한다. ⓒGoogle Research 제공

연구팀은 이 연구에서 최신 기계학습 기법과 기존 물리학 기반 수치해석 기법의 강점을 결합한 하이브리드 대기 모델인 뉴럴GCM을 설계하고, 유럽중기예보센터(ECMWF)의 1980~2020년 데이터를 학습시켰다. 이어 뉴럴GCM으로 장단기 날씨 예보와 기후 시뮬레이션을 하고, 이를 기존 GCM 기반의 기후 예측 모델(AMIP) 및 AI 기후 모델과 비교했다.

그 결과 뉴럴GCM의 1~15일 예측 정확도는 현재 가장 정확한 기상 모델 중 하나로 꼽히는 유럽중기예보센터 모델과 비슷했으며, 기계학습을 이용한 기존 AI 모델과비교해도 비슷하거나 앞서는 것으로 나타났다.

또 뉴럴GCM의 40년 기후 예측 시뮬레이션에 해수면 온도를 포함한 결과 유럽중기예보센터 모델의 시뮬레이션과 비슷한 지구 온난화 추세를 보였고, 사이클론 발생과 궤적 예측에서는 기존 기후모델보다 성능이 더 우수했다.

연구팀은 뉴럴GCM은 기존 GCM 기반 기후모델과 비교할 때 계산 효율이 높고 복잡성이 낮다며 현재 예측 정확도가 높은 모델 중 하나인 유럽중기예보센터 통합예측모델(ECMWF IFS)보다 계산 시간이 1/5~1/3 정도로 짧았다고 설명했다. 이어 뉴럴GCM은 장단기 예보와 기후 시뮬레이션에서 현 최고 기계학습 및 물리학 기반 기후모델과 비슷하거나 더 높은 정확도를 보였다며 이는 기계학습이 GCM 기반 기후모델을 개선할 수 있는 실행 가능한 접근 방식임을 보여준다고 강조했다.

◆ 출처 : Nature, Stephan Hoyer et al., 'Neural general circulation models for weather and climate', https://www.nature.com/articles/s41586-024-07744-y

연합뉴스
저작권자 2024-07-29 ⓒ ScienceTimes

태그(Tag)

관련기사

목록으로
연재 보러가기 사이언스 타임즈에서만 볼 수 있는
특별한 주제의 이야기들을 확인해보세요!

인기 뉴스 TOP 10

속보 뉴스

ADD : 06130 서울특별시 강남구 테헤란로7길 22, 4~5층(역삼동, 과학기술회관 2관) 한국과학창의재단
TEL : (02)555 - 0701 / 시스템 문의 : (02) 6671 - 9304 / FAX : (02)555 - 2355
정기간행물 등록번호 : 서울아00340 / 등록일 : 2007년 3월 26일 / 발행인 : 정우성 / 편집인 : 윤승재 / 청소년보호책임자 : 윤승재
한국과학창의재단에서 운영하는 모든 사이트의 콘텐츠는 저작권의 보호를 받는 바 무단전재, 복사, 배포 등을 금합니다.

사이언스타임즈는 과학기술진흥기금 및 복권기금의 지원으로 우리나라의 과학기술 발전과 사회적 가치 증진에 기여하고 있습니다.