지난 10여 년 간 과학자들은 사람의 신장, 간, 피부, 소화기관 등을 모방한 유사 생체 장기 ‘오가노이드(organoids)를 만들어왔다.
‘미니 장기’, 혹은 ‘유사 장기’ 등으로 번역되는데 이 인공 장기는 인체에서 채취한 줄기세포를 3차원적으로 배양하거나 재조합해 만든 작은 장기 유사체로 신약개발과 질병 치료, 인공장기 개발 등에 활용이 가능하다.
오가노이드를 처음 만든 사람은 영국 케임브리지대 매들린 랭커스터(Madeline Lancaster) 박사다. 그는 2013년 신경줄기세포로 뇌 오가노이드를 제작했다. 이후 미국과 일본 등에서 심장, 위, 간, 신장, 췌장, 갑상선 등 10여 개의 오가노이드가 탄생했다.
사진은 ‘미니 뇌’ 안의 뇌세포들을 3D 컬러 영상으로 촬영한 영상. 과학자들이 뇌 오가노이드로 ‘미니 뇌’를 만든 후 베일에 가려져 있던 뇌세포 성장의 비밀을 밝혀내고 있다. ⓒMuotri Lab/UCTV
오가노이드로 ‘미니 뇌’ 제작에 성공
최근 들어서는 뇌 오가노이드로 사람의 생각을 할 수 있는 ‘미니 뇌(mini brain)’가 제작되고 있다.
30일 ‘사이언스 뉴스’, ‘사이언티픽 아메리카’ 등 주요 과학언론들은 샌디에이고 캘리포니아 대학 연구진이 미숙아 정도의 사고가 가능한 ‘미니 뇌’를 개발하는데 성공했다고 전했다.
그동안 과학자들은 줄기세포를 키워 유사 뇌를 만들었지만 실제 신경세포의 활동을 모방할 수는 없었다. 그러나 미숙하지만 뇌 기능을 수행할 수 있는 ‘미니 뇌’를 제작함으로써 뇌전증, 뇌일혈, 조현병 등 정신질환을 치료하는 데 도움을 줄 수 있을 것으로 기대하고 있다.
연구팀은 줄기세포를 오가노이드로 성장시키기 위해 성인의 피부와 혈액세포로 만든 유도만능줄기세포(iPS cells)를 사용했다.
피부와 혈액 세포는 재구성해 신장이나 간 등 장기 조직으로 성장시킬 수 있는데 이번 연구에서는 뇌의 가장 바깥쪽 부위에 있으면서 복잡한 사고와 행동을 관장할 수 있는 피질(cortex)로 발전시켰다.
그리고 유전자의 발현을 조절하는 전사조절인자(transcription factors)를 이용해 오가노이드가 ‘미니 뇌’로 성장하게 하는데 성공했다.
렌즈콩 크기의 이 ‘미니 뇌’는 현재 실험 접시 안에서 자라면서 리드미컬한 전자 신호(rhythmic electrical signals)를 빠르게 발신하고 있는 중이다.
캘리포니아대 연구진은 이 진동이 빠르게 성장하고 있는 미숙아 수준의 아기 뇌와 닮았으며, 지금과 같은 속도로 성장할 경우 그 기능을 더 발전시켜 정상적인 사람 수준에 이르게 할 수 있을 것으로 보고 있다.
연구 논문은 ‘셀 스템 셀(Cell Stem Cell)’ 지 29일 자에 게재됐다. 논문 제목은 ‘Complex Oscillatory Waves Emerging from Cortical Organoids Model Early Human Brain Network Development’이다.
렌즈콩 크기의 뇌에서 뇌파 송출 확인
초기 뇌 성숙 과정이 유전자에 의한 발달 프로그램에 의해 결정된다는 사실은 이미 알려진 사실이다.
그러나 이 과정이 어떤 식으로 진행되는지에 대해 정확히 밝혀지지 않고 있었다. 성장하고 있는 사람 뇌에 실험적으로 접근할 수 없었기 때문.
연구진은 이 문제를 해결하기 위해 뇌 오가노이드로 ‘미니 뇌’를 만들었으며, 수개월간 이 모델을 관찰했으며, 뇌로부터 나오는 진동을 통해 ‘미니 뇌’가 살아 있음을 확인할 수 있었다고 말했다.
논문 작성에 참여한 캘리포니아 대학의 앨리슨 무오트리(Alysson Muotri) 교수는 “사람 뇌의 일부라고 볼 수 있는 이 ‘미니 뇌’에서 사상 처음으로 진동과 신호를 관찰해 분석할 수 있었다.”고 설명했다.
연구진은 ‘미니 뇌’로부터의 진동을 측정하기 위해 초소형 전극을 설치했다. 그리고 진동을 측정한지 정확히 두 달 후 산발적이지만 일정한 진동수를 지닌 뇌파(brain wave)를 탐지할 수 있었다.
10개월이 지난 후에는 각각의 오가노이드가 렌즈콩 크기로 자라났다. 그리고 이 여러 개의 ‘미니 뇌’에서 각각 다른 진동수의 뇌파를 발산했는데 미숙아의 뇌파검사 결과에서 나타나는 특징들과 유사하다는 사실을 확인할 수 있었다.
그러나 시간이 지나면서 뇌파의 형태가 바뀌기 시작했다.
무오트리 교수는 “이 렌즈콩 크기의 ‘미니 뇌’에서 수개월 동안 전자신호를 발산하고 있었으며, 지속적으로 증가 추세를 보였다.”고 밝혔다.
태아의 초기 뇌세포가 시간이 지나면서 점차 안정을 찾아나가는 것과 비슷했는데 사람의 뇌 발달에 있어 안정된 과정으로 나아가는 단계로 추정하고 있다고 설명했다.
또한 이 진동이 자극적 아미노산(excitatory amino acid)을 조절하는 글루타메타제(glutamatergic)와 감마아미노 낙산을 생산하는 신경세포의(GABAergic)의 영향을 받고 있다는 사실을 확인했다고 말했다.
무오트리 교수는 “초기 뇌세포의 성장과정에서 시냅스 기능이 발달하고 있었으며, 이를 통해 정상적인 감각(sensation)과 사고(thought), 그리고 움직임(movement)을 이끌어낸다는 사실을 추정할 수 있었다.”고 설명했다.
뇌 기능을 설명하는 데 있어 신경학과 정신의학은 밀접한 관계를 갖고 있다. 이번 연구 결과는 신경학 측면에서 뇌질환이 어떻게 일어나고 있는지 그 원인을 규명할 수 있는 계기가 되고 있다.
과학계는 이번 연구 결과에 깊은 관심을 보이며 향후 연구 결과가 빠르게 진척될 경우 뇌과학은 물론 정신의학 전반에 큰 변화를 가져올 것으로 예상하고 있다.
(27599)
로그인후 이용 가능합니다.
종양 내부에 발생하는 저산소증만 감지해 암을 진단할 수 있는 신개념 조영기술이 개발됐다. 한국기초과학지원연구원(KBSI) 바이오융합연구부 홍관수 박사 연구팀은 미국 텍사스대 세슬러 교수 연구팀과 공동으로 종양의 저산소증에 반응해 신호를 내는 감응성 바이모달(MRI·광학 혼합) 이미징 프로브를 개발했다고 25일 밝혔다.
인공지능(AI) 기술이 국가안보에도 중대한 영향을 미치는 상황에 우리나라가 대응해 필수적인 AI 기술을 중점 육성해야 한다는 제언이 나왔다. 24일 학계에 따르면 소프트웨어정책연구소가 최근 펴낸 '국가안보를 위한 인공지능과 3대 전략 기술'보고서는 우리 정부가 보호·육성해야 할 AI 기술로 ▲ 지능형 반도체 ▲ 자율무기 ▲ 생성적 적대 신경망(GAN) 등 3가지를 제시했다.
울산과학기술원(UNIST)은 빛 없이도 화학반응을 일으키는 새로운 광촉매 기술을 개발했다고 24일 밝혔다. UNIST에 따르면 신소재공학과 신형준 교수 연구팀은 기존 이산화 티타늄 광촉매 위에 탄소나노소재를 증착시킨 형태로 광촉매를 설계해 햇빛이 없을 때도 유기 오염물질 제거·살균 효과가 있는 광촉매를 개발했다. 광촉매가 물을 분해해 만드는 수산화 라디칼은 미세플라스틱, 폐염료 등 유기 오염물질 분해와 살균 효과가 있어 폐수 처리나 공기 정화 기수에 사용할 수 있다.
과학기술정보통신부(과기정통부)는 25일 '누리호 발사관리위원회'를 열어 한국형발사체 누리호(KSLV-Ⅱ)의 2차 발사일을 6월 15일로 확정했다고 밝혔다. 다만 기상 등에 따른 일정 변경 가능성을 고려해 발사예비일을 내달 16∼23일로 설정했다. 정확한 발사시각은 발사 당일에 2차례 열릴 발사관리위원회에서 확정되며, 시간대는 지난 1차 발사(2021년 10월 21일 오후 5시)와 비슷하게 오후 3∼5시 사이에 이뤄질 것으로 전망된다.
미세먼지 중에서도 가장 입자가 작은 나노미세먼지가 허파에 깊숙이 침투해 오래 머무르면서 영향을 끼친다는 연구결과가 나왔다. 23일 한국기초과학지원연구원(KBSI)에 따르면 바이오융합연구부 홍관수·박혜선 박사 연구팀은 형광 이미징이 가능한 초미세·나노미세먼지 모델입자를 제작해 생체에 주입한 뒤 최대 한 달 동안 장기별 이동 경로와 세포 수준에서의 미세먼지 축적량을 비교·분석했다.
과학기술정보통신부 국립전파연구원은 국제전기통신연합 전기통신표준화부문(ITU-T) 정보보호 연구반(SG17) 회의에서 우리나라 주도로 개발한 표준 4건이 사전 채택됐다고 23일 밝혔다.
한국과학기술원(KAIST)은 신소재공학과 장재범 교수와 전기및전자공학과 윤영규 교수 연구팀이 기존보다 5배 더 많은 단백질 바이오마커(생체지표)를 동시에 찾아낼 수 있는 '멀티 마커 동시 탐지 기술'을 개발했다고 23일 밝혔다. 한 번에 15∼20개 단백질 마커를 동시에 탐지할 수 있는 피카소(PICASSO) 기술은 동시 탐지 기술 가운데 가장 많은 수의 단백질 마커를 가장 저렴한 비용으로, 가장 빨리 탐지한다.